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Algorithms for Structural Natural-Frequency Design
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The algorithms used in the JPL-IDEAS antenna-structure-design-optimization
program are furnished here. The algorithms are based upon the operational re-
search method of optimality criteria and the structural analysis method of virtual
work. Examples of the natural-frequency-constrained design of an antenna tripod

structure are included.

I. Introduction

The JPL-IDEAS program [1] is a finite-element struc-
ture-design-optimization program with minimum struc-
ture weight as the design objective. In addition to the
more conventional constraints, such as those on stresses
and displacements, structures can be subject to constraints
on antenna microwave performance parameters {2]. The
program can also accept minimum structural natural fre-
quency [3] for any specified vibration mode as a constraint.
The design variables are the areas of rod members or the
thicknesses of shear, triangular, or quadrilateral membrane
plates. The design approach employs the Optimality Cri-
teria Method [4] in which Lagrangian multipliers [5,6] are
used to determine the sizes of the design variables, and a
virtual work formulation is used to determine the sensitiv-
ities of the design variables.

Details of the natural-frequency design algorithm used
in an earlier version of the JPL-IDEAS program are de-
scribed in [3]. As explained there, depending upon de-
tails of formulation of the optimization problem, it was
necessary to use the artifice of scaling the final design to
" obtain the minimum weight design that met the natural-
frequency constraints. In other research that also concen-
trates on the natural-frequency design case [7,8,9], it is

also necessary to resort to scaling or recursion to obtain
the final design. More recently, the JPL-IDEAS natural-
frequency design algorithm has been improved to elimi-
nate the need for scaling the design. Scaling is especially
objectionable if members are to be selected from tables
of commercially available structural shapes. The current
algorithm provides an explicit equation for computation
of the Lagrangian multiplier in the case of a single-mode
natural-frequency constraint, and it can be extended to
deal with constraints on multiple-mode frequencies. This
algorithm is described here.

Il. Sensitivity Coefficient

To arrive at the sensitivity of natural frequency to
the design variables, the natural-frequency eigenvalue of
a particular vibration mode is expressed in terms of the
Rayleigh quotient as

'K
W = ;’t_M% (1)

in which ¢ is the mode-shape eigenvector, K is the as-
sembled structure stiffness matrix, M is the assembled
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structure lumped (diagonal) mass matrix, w is the nat-
ural circular frequency, and w? is the eigenvalue. Taking
the partial derivative of the eigenvalue with respect to a
particular design variable a; (such as a rod area or plate
thickness, either as an individual member or linked mem-
ber group) and also using the customary definitions of gen-
eralized modal mass M and generalized modal stiffness &,

eg.,
M= 6'Mg (2)
K= 'K (3)
the partial derivative can be expressed as

Ow? 1 0K LOM
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in which the partial derivatives of the assembled stiffness
and mass matrices can be expressed in terms of element
member stiffness k; and mass m; matrices for the :th mem-
ber as

2 1
B = o [#hio — o' mic?] 5)

In the right side of the above equation, the first term in
the brackets represents the virtual work and the second
term the virtual kinetic energy for this element in this
vibration mode. Note that each of the bracketed terms
involves only the small subset of the eigenvector associated
with the connectivity of the element. The bracketed term
is replaced by the symbol V;, which will be considered as
an expression of vibratory virtual work, as modified by a
subtractive kinetic energy term, e.g.,

Vi = [¢'kid — ¢'m;dw?] (6)

Consequently, the partial derivative of the eigenvalue with
respect to the 7th member design variable is given by

Ow? Vi
B0~ a: (7)

It is convenient to design for structural natural frequency
as much as possible within the code that is already in
place for static loading design. The JPL-IDEAS program
uses the virtual work of each design variable to design for
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static loading. In contrast to Eq. (6), this virtual work is
expressed by a displacement-method formulation for plate
members and by a force-method formulation for bar mem-
bers as follows:

Vi = diukion = (CrCo ) ®)

in which the subscript R denotes a real external loading
and D denotes a virtual external loading, ¢z represents
the corresponding real displacement vector, and ¢p rep-
resents the virtual loading displacement vector. For a bar
element, Cr and Cp represent real loading and virtual
loading stress resultants, while £, a, and E represent the
corresponding length, area, and modulus of elasticity. To
simplify the exposition, the remaining discussion will em-
phasize the treatment for bar members. Minor modifi-
cations appropriate to treat plate members can be found

in [3].

In the case of bar members, it can be seen that the
virtual work for the natural-frequency design can have the
identical form of that in Eq. (8) for the static-loading de-
sign when using the second equality of this equation, pro-
vided that Cg is interpreted as the stress resultant corre-
sponding to the displacements of the eigenvector, and Cp
(dropping the subscript ¢) is computed as

all

Cp = Cr —w?d'mao

Furthermore, if, as in [6], a combined stress coefficient term
FIJ'is defined as

C
FIJ' = chD (10)

the virtual work for the ith element (again dropping the
subscript) can be expressed as

Vo (F]J’Z)i an

a

Consequently, the sensitivity of the eigenvalue to the /th
bar design variable is given by

Ow? F1J'¢ 1
(?ai :< a? >'Wf (12)




At this point, it is convenient to replace FIJ’ with

FIJ'
= 13
FIJ i (13)

so that the sensitivity equation becomes
Ow? F1J¢
_—= | — 14
8a,- ( a? >i ( )

lll. Optimality Criterion

Let w* be the minimum requirement for the natural
frequency; the following constraint inequality then applies:

w?-w?<0 (15)

The object is to minimize the structural weight, which, for
bar members with a weight-density parameter v, Is given

by

objective = min (Z('yfa)i) (16)

Forming the Lagrangian L” in the conventional way, with
X as the yet-to-be-determined Lagrangian multiplier, pro-
vides

*

L =) (vfa); + A(w™ —w?) (17)

Setting the partial derivative of the expression with respect
to each design variable equal to zero and using Eq. (14)
provides the explicit expression for the optimum value of
the design variable a; as follows:

ChE)

The above equation defines the optimality criterion for
each of the design variables. The remaining requirement
is to determine A.

IV. Lagrangian Multiplier

Using the sensitivity expression and summing over all
the members, Aw? (the change in eigenvalue) can be esti-
mated as follows:

AJ:Z[(Fge) (Zz—a)]i (19)

Writing the right side of the above equation as the differ-
ence of two summations, the following is obtained:

AwQZZ(Fgeal_E(FiJf) 20)

By reexamining Egs. (6), (8), and (10) and with some
algebra, it can be shown that the second summation in
Eq. (20) can be written as

3 (Fi]f)i _ L‘121\/[_9; (21)

in which MF is the portion of the generalized mass matrix
contributed by the nonstructural (parasitic) masses. That
is, the generalized mass can be considered as the sum of
the contributions from the structural-design variables Mg
and the contribution of the fixed masses, Mp; e.g.,

M= Ms + Mg (22)
Solving the constraint equation as an equality provides
Aw? = w*? — W2 (23)

The first summation on the right side of Eq. (20) can be
written as the sum of two terms; one term depends upon
free design variables that can be determined according to
the optimality criteria; the second term has bounds a3 for
the design variables, such as a side constraint or a move
limit. Therefore, this term can be written as

FlJéa FIJE (FIJ\Y? ,
> (559, - (5 (5)"7) »

free Y i

Cx ()

bounded
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Finally, some algebra based upon using Egs. (20), (21},
(22), (23), and (24) provides an explicit expression to eval-
uate the Lagrangian multiplier as follows:

* M, F1Jj¢
1/2 (w e M Z a* ab)
AHE =

bounded

FIJ¢ [ FIJ\Y?
> (=

free v

(25)

Consequently, Eq. (18) in conjunction with Eq. (25) consti-
tutes the solution to the natural-frequency design problem
for a particular natural mode. The foregoing developments
could also be extended to provide the solution for simul-
taneous constraints on the frequencies of several modes.
These equations are applied iteratively in a sequence of
design cycles with move limits. Move limits compensate
for linearizations inherent to the foregoing formulations.

V. Design Examples

A hypothetical test problem is chosen to demonstrate
design optimization. The structure considered is a mod-
ification of the actual DSN DSS 13 antenna-reflector tri-
pod structure. Figure 1 shows the antenna and tripod
assembly just after completion in the summer of 1990.
Figure 2 shows the layout and geometry of the isolated
tripod structure component, which is designed with con-
straints on minimum natural frequency. The analytical
model contains about 350 individual structural trusswork
‘rod and plate members, which are linked into 40 distinct
design variable groups. There are about 200 nodes and 450
unrestrained degrees of freedom. In these examples, mem-
bers were selected from a continuous spectrum of available
sizes. In practice, there is a program option that causes
members to be selected from discrete tables of commer-
cially available structural shapes.

The frequency constraints for the first three natural
modes were postulated to be 2.5, 5.2, and 5.8 Hz. The
starting design consisted of about 4.8 kilopounds (kips) of
structure weight plus 4.5 kips of parasitic, nonstructure
weight. All three frequencies at the start were each about
20 percent less than the constraint.
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Figure 3(a) shows the frequencies achieved for indepen-
dent designs for each of these modes. The designs of the
second and third modes approximately satisfied the first
mode constraint. The design for the second mode did not
satisfy the third mode constraint, nor did the third mode
design satisfy the second mode constraint. The first mode
design did not satisfy either of the other two constraints.
The structure weights achieved during these designs are
shown in Fig. 3(b). It can be seen that both the sec-
ond and third mode designs entailed substantial weight
increases. Nevertheless, the first mode design resulted in
a weight reduction while providing the desired increase in
natural frequency.

In another example, all three constraints were applied
simultaneously by using an envelope method as an ap-
proximation to a multiple-constraint design. This method
treats the constraints sequentially and maintains the val-
ues of the design variables at a level no less than the values
determined for previously treated constraints. Although
not strictly an optimal procedure, it has often been found
to work well in practice, especially for stress and displace-
ment constraints. The history of the simultaneous designs
and the structure weight is shown in Fig. 4. All the con-
straints are essentially satisfied at the ninth design cycle,
and the structure weight is less than 3 percent greater than
that of the isolated design for the third mode.

VIi. Conclusion

The algorithm used to design for minimum natural
frequency and in the JPL-IDEAS structural optimiza-
tion computer program has been described and demon-
strated by an example. The optimality criteria method,
which is simple in concept and in execution, is employed.
This method provides an explicit algorithm—almost triv-
ial to invoke—to size the design variables. Determination
of the Lagrangian multiplier, which is used in the algo-
rithm, requires most of the computational effort. The al-
gorithm is based on the well-known virtual work, dummy-
load concept. The final design to meet the constraints is
achieved directly and avoids the artifice of uniform scaling
of computer-derived results.
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Fig. 1. @SN DS5-13 antenna-rellecior-irdped siruciure.
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Fig. 2. DSS5.13 tripod geometry,
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Fig. 4. Simultaneous constraints for three modes.
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